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Abstract:

We consider hourly readings of ozone concentra-
tions over Mexico City and propose a model for
spatial as well as temporal interpolation and pre-
diction. The model is based on regressing the ob-
served readings on a set of meteorological variables,
such as temperature and humidity. A few harmonic
components are added to account for the main pe-
riodicities that ozone presents during a given day.
The model incorporates spatial covariance struc-
ture for the observations and the parameters that
define the harmonic components. Using the Dy-
namic linear model framework, we show how to com-
pute smoothed means and predictive values. The
methodology is illustrated with observations corre-
sponding to September of 1997.
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1. Introduction

Studying levels of tropospheric ozone is important
to understand and improve air quality in major ur-
ban areas. Environmental experts and authorities
have a special interest in ozone because of its impact
on diminishing health, deteriorating materials and
damaging vegetation. According to environmental
standards, pure air should contain less than 1% com-
pound of ozone and exceedingly levels may produce
eye irritation, aggravate respiratory and cardiovas-
cular diseases.

We concentrate on analyzing tropospheric ozone
for Mexico City, the most polluted city in the world.
Located on the bottom of a valley, with approxi-
mately 20 million habitants, Mexico City has main-
tained high levels of pollution during several years
mainly due to huge amounts of motor vehicle and
industrial activity. In 1986, the authorities of the
city recognized the magnification of the problem
and implemented a network of monitoring stations

to measure ozone, carbon-Mon oxides and hydro-
carbons. The network is named Red Atomaitica
de Monitoreo Ambiental de la Ciudad de México
(R.A.M.A.). Currently, the stations that form part
of the R.A.M.A. function during the 365 days of the
year with occasional interruptions for calibration.
Each station takes measures of pollutants automati-
cally, second by second, and the corresponding aver-
ages per hour are reported to the public. The units
of the measurements are in parts per million, that
is, the amount of concentration of the substance in a
volume, where the volume is divided into one million
parts.

In this paper, we consider the spatio-temporal
analysis of ozone time series obtained at some of
the stations of the R.A.M.A. Each data point is
an hourly concentration of ozone in ppm. We also
consider hourly measurements of the meteorological
variables, temperature, humidity and wind velocity.
Our goal is to propose a statistical model that fore-
casts temporally, interpolates spatially and show its
performance at both levels. We elaborate our models
within the Bayesian paradigm using Dynamic Lin-
ear Models as in West and Harrison (1997). We
strongly believe our modeling approach could assist
in the implementation of an environmental contin-
gency strategy.

Previous analyses of ground-level ozone data for
multiple sites, modeled jointly, appears in the paper
by Carroll et al. (1997), which uses a spatially homo-
geneous and temporally stationary space-time model
to study ozone exposure in Texas. Their model in-
cludes temperature, wind speed and wind direction
as covariates. Also, Guttorp et ol. (1994) built a
space-time model for tropospheric ozone via the spa-
tial deformation method of Sampson and Guttorp
(1992), and placed it in a temporal framework by
adding a stationary AR process at each station. On
the other hand, there is work that considers mul-
tiple sites but modeled separately. For example,
Rao et al. (1997) and Milanchus et al. (1998) con-
sider an iterative moving-average filter that decom-



poses ozone into a baseline, trend and a seasonal
variation site by site. An extensive and critical re-
view of different approaches of meteorological ad-
justment and spatio-temporal estimation of ozone
are discussed in Thompson et al. (1999). Other
general approaches of space-time modeling appear
in Stroud et al. (1999), Sansé and Guenni (2000),
Tonellato (1997), Wikle et al. (1999), Berliner et al.
(1999), Mardia et al. (1998), among others.

In the next section, we describe the data under
study. In Section 3, we consider the periodicities of
the ozone series using a standard Bayesian regression
tool. In Section 4, we present our space-time model
for ozone. In the final section, we present the results
based on the model and related discussion.

2. Data description

We consider hourly averages of ozone in ppm mea-
sured during 1997 at 19 different monitoring stations
scattered irregularly in Mexico City. For 10 of these
19 stations, we also have hourly measurements cor-
responding to three meteorological variables: tem-
perature (in degrees centigrades), wind speed (me-
ters/second) and relative humidity (in percent). Re-
fer to Figure 1 to locate the stations in a map that
includes the metropolitan area of Mexico City. All
the data were provided by the Instituto Nacional de
Ecologfa of Mexico.

Hourly ozone time series for the month of Septem-
ber 1997 appear in Figure 2. The series correspond
to 5 monitoring stations. The first two frames are for
stations nearby the downtown area: Merced (MER)
and Hangares (HAN). The middle frame is for sta-
tion Benito Juarez (BJU), which is located close to
the center of the map of Figure 1. The last two
frames correspond to stations in the south side of
the city, Pedregal (PED) and Tlalpan (TLA). In
general, we notice a diurnal cycle of ozone and usu-
ally a very high peak during the early afternoon
hours, between 1 pm and 4 pm. This high peak is
associated to the daily maximum temperature and
the motor-vehicular activity in the city during the
morning and early afternoon hours. Also, there is a
smaller but frequent nocturnal peak. Parts of the
series are missing and usually correspond to late
evening-early morning hours. We do not notice any
obvious weekly patterns or weekend effects but there
are changes from one day to the other that suggest
that, even after considering daily cycles, there is lack
of stationarity in the series. Additionally, the figure
shows that the spatial pattern of ozone in Mexico
City is complex. Notice that the levels of Merced
are consistently lower than those of Hangares, which
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Figure 1: Locations of 19 Monitoring Stations.
Black squares represent the 10 stations considered
in the present analysis, while white squares repre-
sent additional stations.

is spatially close, during the whole month.

Figure 3 summarizes the data of ozone with plots
of hourly medians over 1997 for each of the 19 mon-
itoring stations. Each frame roughly represents the
Northwest (NW), Northeast (NE), Southwest (SW)
and Southeast (SE) of Mexico City. The hourly me-
dians exhibit the daily cycle of ozone and clearly
show that the high peak is reached at different hours
of the afternoon across stations. Particularly, for the
stations grouped within the NW, NE and SW, the
variability of median level across nearby stations is
important. In a similar display, Figure 4 presents
the hourly medians over 1997 for temperature (top
frames) and relative humidity (bottom f{rames) for
the 10 stations where meteorology is available. The
stations were grouped into two subregions, one that
represents the stations closer to the interior of the
valley that surrounds Mexico City (right panels) and
the other, that represents the stations closer to the
mountain side (left panels). Both median temper-
ature and median relative humidity have daily cy-
cles, are negatively correlated and exhibit less spa-
tial variability compared to median ozone levels.

As is usual for ozone measurements, the distribu-
tion of the data has an asymmetric shape that sug-
gests the use of a transformation to justify the use of
models based on the normal distribution. The two
most common transformations in the literature for
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Figure 2: Hourly ozone levels for five monitoring
stations corresponding to September 1997
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Figure 3: Median ozone levels per hour for 1997.
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Figure 4: Median temperatures (top frames) and rel-
ative humidities (bottom frames) per hour for 1997.

ozone data are the square root and the natural loga-
rithm. Thompson et al. (1999) report a summary of
the transformations used by different authors that
analyze ozone series. In this paper, we consider a
log transformation for the data. This is supported
on analyses of the distribution of the observed values
as well as the behavior of the residuals of the models
that we propose in the following sections.

3. Inference on Periodicities

Ag can be seen from the descriptive analysis of the
data, an accurate specification of the cyclical be-
havior is a key feature for modeling. A statisti-
cal approach to make inferences on periodicities is
the Bayesian periodogram introduced by Bretthorst
(1988). The Bayesian periodogram is defined as the
marginal log-likelihood of the regression model

Y: = a cos(2mt/A) + b sin(2wt/A) + €,

marginalized with respect to the reference prior
p(a,b,0?) o« 1/0?, where t indexes time, € ~
N(0,0?) and ) is the underlying periodicity or wave-
length.

Figure 5 shows the Bayesian periodograms for the
ozone time series of September 1997 and measured at
the monitoring stations that have meteorology. The
figure has a common range of values for A, between
0 and 50 time units. We observe that the general
pattern of all the periodograms is similar and that
the data has distinctive cycles with wavelengths of
12 and 24 hours. Some of the stations have a smaller
peak at eight hours. We also evaluated the Bayesian
periodogram for values of A greater than 50 and we
could not find any other relevant peaks.

4. Space-Time Model

Let Y;; denote the observed log ozone concentration,
for each station ¢ = 1,...,5 and time t = 1,...,T
and let X;; be the j-th covariate at time ¢ and sta-
tion i. Then define Z;; = (1, X4, ..., Xpit)' and let
B: be the corresponding (r+1)-dimensional vector of
covariate coefficients. Z; may include meteorology
and a spatial trend can be modeled by making some
terms functions of the coordinates of the stations,
for example, a first or a second order polynomial on
the coordinates of latitude and longitude.

Let «;; denote the g-dimensional vector of sea-
sonal coefficients for station i corresponding to a
seasonal component S; consisting of sine and co-
sine terms. The specification of the periodicities of
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Figure 5: Bayesian periodogram of ozone concen-
trations at ten monitoring stations in Mexico City,
during the first two weeks of September 1997.

the seasonal component may follow a Bayesian pe-
riodogram analysis. For instance, the results of the
previous section lead to a seasonal term

/ wt, . ,wt wt, . 7t
S, = (cos(ﬁ),sm(ﬁ),cos(g),s1n(€))

which implies ¢ = 4.
The general space-time model that we propose for
ozone data is given by

Yit = Z;,B: + Sy + €t

where the observation errors, ;;, are spatially cor-
related with Gaussian distribution and a covariance
matrix of the form o2V;. Note that the coefficients
related to the covariates are assumed equal for all
stations, while we are assuming that each station
has its own set of seasonal parameters. This is justi-
fied by the results obtained with a simplified version
of the model that was fitted to the data station by
station . This general space-time model clearly has a
very high number of parameters, since at each time
t there are g parameters for each station, r common
ones plus the parameters that define the spatial cor-
relation.

A substantial reduction in the number of parame-
ters is achieved by assuming that the amplitudes of
each cyclical component are different, but the phases
are very similar between stations and almost con-
stant in time. This assumption is supported by a
univariate models fitted station by station.

We can thus consider a modification of the model

given by )
Yit = ZyBs + Spaus + €t

but now a;; is a vector of dimension ¢/2 and S; =
(cos(Zt) + a1 sin(ZE),...cos(5L) +ay/» sin(3L)).

Thus a;; (1 + a3) is the amplitude of the j-th pe-
riodicity of the i-th station at time ¢, and tan='(a;)
is its amplitude. At the current stage of model-
ing, we are using temperature, humidity, wind-speed
anomalies and a second order polynomial on latitude
and longitude as the defining covariates for Z},.

Additionally, the parameters in the model evolve
in time according to random-walk evolutions, i.e.,

Bt = Bs—1 +wie wig ~ N0, Wiy),
o = a1+ wop; wae~ N0, Way)

where the vector e« is the concatenation of the
vectors (1, Ojat, -+, 5s¢); § =1,...,¢, which are
the parameters corresponding to the j-th periodicity.

Furthermore, at the observation level, we assume
that the covariance matrix of the errors has the form
a’exp(—D/).), or Vi = exp(—D/)), where D is
the matrix of euclidean distances between monitor-
ing stations. Wy ; is specified with a discount factor
approach and Wy, as a block diagonal matrix with
blocks of the form mexp(—D/A;);5 =1,...,4q.

This spatio-temporal model can be easily writ-
ten in the state-space form notation of West and
Harrison (1997). Thus, conditional on the hyper-
parameters that define the covariance structure, the
filtering and recurrence equations of the DLM pro-
duces predictive values and restropective inferences
for observed values. Formal Bayesian inference on
the hyperparameters leads to the Forward Filtering
Backward Simulation algorithm which is computa-
tionally very intensive for a high-dimensional state
vector. Alternatively, the hyperparameters may be
estimated via Empirical Bayes by maximizing the
marginal log-likelihood over an extensive grid of val-
ues. Then, the standard filtering and recurrence
equations may be applied to update the state-vector
of the DLM conditional on these MLE estimates.

5. Results and Discussion

The space time model was used to study the data of
the first two weeks of September 1997. The empiri-
cal Bayes estimate for o2 is 0.08 and for A, is 0.001.
The covariance for the regression evolution was spec-
ified with three discount factors (61,02, d3). &1 corre-
sponds to the terms of the second order polynomial
in latitude and longitude, d; is related to the covari-
ates temperature and relative humidity, while 43 is



related to the wind-speed anomalies. The empirical
Bayes estimates of the discount factors are 0.825,
0.875 and 0.95 respectively. Additionally, the em-
pirical Bayes estimates for 7, and 7o are both equal
to 0.00015. For A; and Ao the estimates are both
0.1.

Under these specifications, we produce Figure 6
which has information at two levels for 5 monitor-
ing stations. From September 1 until the afternoon
of September 13, filtered means and 95% probabil-
ity bands (solid lines) are plotted with the observa-
tions (black circles). Furthermore, from the evening
hours of September 13 until the end of September
15, we present forecast means with the 95% predic-
tive probability intervals (solid lines) and the actual
observed values of ozone (white circles). Notice that
in the restrospective sense, the model represents the
cyclical patterns and non-stationarities of the data
adequately. On the other hand, the predictive in-
tervals become explosive as time progresses, so the
model is only useful for short-term forecasting.

Maps of hourly ozone levels for September 2, 1997
appear in Figure 7. The region of inference is the
convex hull of the points that represent the stations
where we have ozone data. At each hour, unknown
values of the covariates were taken as averages of all
the known values at other stations. Thus, the DLM
was fitted with all the 19 stations and the hourly
filtered means for September 2 smoothed using the
Splus function interp. The resulting map seems to
be consistent with the cyclical behavior of the data
and theories about the dispersion of ozone in Mex-
ico City. The pollutant builds at around 10-11 a.m.,
the peak hours are between 2 and 3 p.m. The lev-
els decrease at about 5-6 p.m. We detected some
peculiar boundary effect at late night-early morning
hours like 4 a.m. This is due to a combination of
missing information at those hours in distant loca-
tions and the use of a second order polynomial as a
spatial mean function.

Further developments consist in formulating a
model that will produce a complete Bayesian analy-
sis on the hyperparameters and formally interpolates
the meteorology.
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Figure 6: Data, retrospective means and predictive
values with 95% probability bands for 5 monitoring
stations.
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Figure 7: Hourly smoothed means of ozone levels for
September 2, 1997.
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